Induction of Siglec-G by RNA Viruses Inhibits the Innate Immune Response by Promoting RIG-I Degradation
نویسندگان
چکیده
RIG-I is a critical RNA virus sensor that serves to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling remains to be fully understood. We report here that RNA viruses, but not DNA viruses or bacteria, specifically upregulate lectin family member Siglecg expression in macrophages by RIG-I- or NF-κB-dependent mechanisms. Siglec-G-induced recruitment of SHP2 and the E3 ubiquitin ligase c-Cbl to RIG-I leads to RIG-I degradation via K48-linked ubiquitination at Lys813 by c-Cbl. By increasing type I interferon production, targeted inactivation of Siglecg protects mice against lethal RNA virus infection. Taken together, our data reveal a negative feedback loop of RIG-I signaling and identify a Siglec-G-mediated immune evasion pathway exploited by RNA viruses with implication in antiviral applications. These findings also provide insights into the functions and crosstalk of Siglec-G, a known adaptive response regulator, in innate immunity.
منابع مشابه
PKACs attenuate innate antiviral response by phosphorylating VISA and priming it for MARCH5-mediated degradation
Sensing of viral RNA by RIG-I-like receptors initiates innate antiviral response, which is mediated by the central adaptor VISA. How the RIG-I-VISA-mediated antiviral response is terminated at the late phase of infection is enigmatic. Here we identified the protein kinase A catalytic (PKAC) subunits α and β as negative regulators of RNA virus-triggered signaling in a redundant manner. Viral inf...
متن کاملProcessing of Genome 5′ Termini as a Strategy of Negative-Strand RNA Viruses to Avoid RIG-I-Dependent Interferon Induction
Innate immunity is critically dependent on the rapid production of interferon in response to intruding viruses. The intracellular pathogen recognition receptors RIG-I and MDA5 are essential for interferon induction by viral RNAs containing 5' triphosphates or double-stranded structures, respectively. Viruses with a negative-stranded RNA genome are an important group of pathogens causing emergin...
متن کاملDDX60 Is Involved in RIG-I-Dependent and Independent Antiviral Responses, and Its Function Is Attenuated by Virus-Induced EGFR Activation.
RIG-I-mediated type I interferon (IFN) production and nuclease-mediated viral RNA degradation are essential for antiviral innate immune responses. DDX60 is an IFN-inducible cytoplasmic helicase. Here, we report that DDX60 is a sentinel for both RIG-I activation and viral RNA degradation. We show that DDX60 is an upstream factor of RIG-I that activates RIG-I signaling in a ligand-specific manner...
متن کاملWhat viruses can teach us about the human immune system
The first and most critical step in a host’s response to viral infection is the recognition of the viral invader by the immune system. This task is carried out by a repertoire of sensor molecules, found in most organisms, that recognize features that are unique to the virus and not found in the host, such as viral double-stranded RNA. The principle that hosts are able to detect specific pathoge...
متن کاملRIG-I Detects Viral Genomic RNA during Negative-Strand RNA Virus Infection
RIG-I is a key mediator of antiviral immunity, able to couple detection of infection by RNA viruses to the induction of interferons. Natural RIG-I stimulatory RNAs have variously been proposed to correspond to virus genomes, virus replication intermediates, viral transcripts, or self-RNA cleaved by RNase L. However, the relative contribution of each of these RNA species to RIG-I activation and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 152 شماره
صفحات -
تاریخ انتشار 2013